AssistantAgenthuman_input_mode
is default to “NEVER”
and code_execution_config
is default to False.Name | Description |
---|---|
name | Type: str |
system_message | Type: str | None Default: ‘You are a helpful AI assistant.\nSolve tasks using your coding and language skills.\nIn the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to execute.\n 1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file, print the content of a webpage or a file, get the current date/time, check the operating system. After sufficient info is printed and the task is ready to be solved based on your language skill, you can solve the task by yourself.\n 2. When you need to perform some task with code, use the code to perform the task and output the result. Finish the task smartly.\nSolve the task step by step if you need to. If a plan is not provided, explain your plan first. Be clear which step uses code, and which step uses your language skill.\nWhen using code, you must indicate the script type in the code block. The user cannot provide any other feedback or perform any other action beyond executing the code you suggest. The user can't modify your code. So do not suggest incomplete code which requires users to modify. Don't use a code block if it's not intended to be executed by the user.\nIf you want the user to save the code in a file before executing it, put # filename |
llm_config | Type: LLMConfig | dict[str, typing.Any] | Literal[False] | None Default: None |
is_termination_msg | Type: Callable[[dict[str, Any]], bool] | None Default: None |
max_consecutive_auto_reply | Type: int | None Default: None |
human_input_mode | Type: Literal[‘ALWAYS’, ‘NEVER’, ‘TERMINATE’] Default: ‘NEVER’ |
description | Type: str | None Default: None |
**kwargs | Type: Any |
Name | Description |
---|---|
messages | A list of message dictionaries, representing the conversation history. Type: list[dict[str, typing.Any]] | None Default: None |
sender | The agent object representing the sender of the message. Type: Agent | None Default: None |
config | Configuration object, defaults to the current instance if not provided. Type: Any | None Default: None |
Type | Description |
---|---|
tuple[bool, str | None] | Tuple[bool, Union[str, Dict, None]]: A tuple containing a boolean indicating if the conversation should be terminated, and a human reply which can be a string, a dictionary, or None. |
Name | Description |
---|---|
func_call | a dictionary extracted from openai message at key “function_call” or “tool_calls” with keys “name” and “arguments”. Type: dict[str, typing.Any] |
call_id | a string to identify the tool call. Type: str | None Default: None |
verbose | Whether to send messages about the execution details to the output stream. When True, both the function call arguments and the execution result will be displayed. Defaults to False. Type: bool Default: False |
Type | Description |
---|---|
tuple[bool, dict[str, typing.Any]] | A tuple of (is_exec_success, result_dict). is_exec_success (boolean): whether the execution is successful. result_dict: a dictionary with keys “name”, “role”, and “content”. Value of “role” is “function”. “function_call” deprecated as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: Any | None Default: None |
Name | Description |
---|---|
message | the message to be processed. Type: str | dict[str, typing.Any] | None |
**kwargs | any additional information. It has the following reserved fields: “carryover”: a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string. If provided, we will combine this carryover with the “message” content when generating the initial chat message. Type: Any |
Type | Description |
---|---|
dict[str, typing.Any] | str | str or dict: the processed message. |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: Any | None Default: None |
None
as one trigger for it to be activated when messages
is non-empty and sender
is None
.Name | Description |
---|---|
messages | a list of messages in the conversation history. Type: list[dict[str, typing.Any]] | None Default: None |
sender | sender of an Agent instance. Type: ForwardRef(‘Agent’) | None Default: None |
**kwargs | Additional arguments to customize reply generation. Supported kwargs: - exclude (List[Callable[…, Any]]): A list of reply functions to exclude from the reply generation process. Functions in this list will be skipped even if they would normally be triggered. Type: Any |
Type | Description |
---|---|
str | dict[str, typing.Any] | None | str or dict or None: reply. None if no reply is generated. |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: Any | None Default: None |
Name | Description |
---|---|
prompt | prompt for the human input. Type: str |
Type | Description |
---|---|
str | str: human input. |
clear_history
is True, the chat history with the recipient agent will be cleared.a_generate_init_message
is called to generate the initial message for the agent.Name | Description |
---|---|
recipient | Type: ConversableAgent |
clear_history | Type: bool Default: True |
silent | Type: bool | None Default: False |
cache | Type: AbstractCache | None Default: None |
max_turns | Type: int | None Default: None |
summary_method | Type: str | Callable[…, Any] | None Default: ‘last_msg’ |
summary_args | Type: dict[str, typing.Any] | None Default: {} |
message | Type: str | Callable[…, Any] | None Default: None |
**kwargs | Type: Any |
Type | Description |
---|---|
ChatResult | ChatResult: an ChatResult object. |
Name | Description |
---|---|
message | message from the sender. If the type is dict, it may contain the following reserved fields (either content or function_call need to be provided). 1. “content”: content of the message, can be None. 2. “function_call”: a dictionary containing the function name and arguments. (deprecated in favor of “tool_calls”) 3. “tool_calls”: a list of dictionaries containing the function name and arguments. 4. “role”: role of the message, can be “assistant”, “user”, “function”. This field is only needed to distinguish between “function” or “assistant”/“user”. 5. “name”: In most cases, this field is not needed. When the role is “function”, this field is needed to indicate the function name. 6. “context” (dict): the context of the message, which will be passed to OpenAIWrapper.create. Type: dict[str, typing.Any] | str |
sender | sender of an Agent instance. Type: Agent |
request_reply | whether a reply is requested from the sender. If None, the value is determined by self.reply_at_receive[sender] .Type: bool | None Default: None |
silent | (Experimental) whether to print the message received. Type: bool | None Default: False |
Name | Description |
---|---|
message | message to be sent. The message could contain the following fields: - content (str or List): Required, the content of the message. (Can be None) - function_call (str): the name of the function to be called. - name (str): the name of the function to be called. - role (str): the role of the message, any role that is not “function” will be modified to “assistant”. - context (dict): the context of the message, which will be passed to OpenAIWrapper.create. For example, one agent can send a message A as: Type: dict[str, typing.Any] | str |
recipient | the recipient of the message. Type: Agent |
request_reply | whether to request a reply from the recipient. Type: bool | None Default: None |
silent | (Experimental) whether to print the message sent. Type: bool | None Default: False |
Name | Description |
---|---|
chat_queue | a list of dictionaries containing the information of the chats. Each dictionary should contain the input arguments for initiate_chat Type: list[dict[str, typing.Any]] |
Type | Description |
---|---|
list[AsyncRunResponseProtocol] | a list of ChatResult objects corresponding to the finished chats in the chat_queue. |
Name | Description |
---|---|
name | Type: list[str] | str |
Name | Description |
---|---|
agent | Type: Agent |
Name | Description |
---|---|
messages | A list of message dictionaries, representing the conversation history. Type: list[dict[str, typing.Any]] | None Default: None |
sender | The agent object representing the sender of the message. Type: Agent | None Default: None |
config | Configuration object, defaults to the current instance if not provided. Type: Any | None Default: None |
Type | Description |
---|---|
tuple[bool, str | None] | A tuple containing a boolean indicating if the conversation should be terminated, and a human reply which can be a string, a dictionary, or None. |
Name | Description |
---|---|
recipient | the agent with whom the chat history to clear. If None, clear the chat history with all agents. Type: Agent | None Default: None |
nr_messages_to_preserve | the number of newest messages to preserve in the chat history. Type: int | None Default: None |
Name | Description |
---|---|
code_blocks |
Name | Description |
---|---|
func_call | a dictionary extracted from openai message at “function_call” or “tool_calls” with keys “name” and “arguments”. Type: dict[str, typing.Any] |
call_id | a string to identify the tool call. Type: str | None Default: None |
verbose | Whether to send messages about the execution details to the output stream. When True, both the function call arguments and the execution result will be displayed. Defaults to False. Type: bool Default: False |
Type | Description |
---|---|
tuple[bool, dict[str, typing.Any]] | A tuple of (is_exec_success, result_dict). is_exec_success (boolean): whether the execution is successful. result_dict: a dictionary with keys “name”, “role”, and “content”. Value of “role” is “function”. “function_call” deprecated as of OpenAI API v1.1.0 See https://platform.openai.com/docs/api-reference/chat/create#chat-create-function_call |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: dict[str, typing.Any] | Literal[False] | None Default: None |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: Any | None Default: None |
Name | Description |
---|---|
message | the message to be processed. Type: str | dict[str, typing.Any] | None |
**kwargs | any additional information. It has the following reserved fields: “carryover”: a string or a list of string to specify the carryover information to be passed to this chat. It can be a string or a list of string. If provided, we will combine this carryover with the “message” content when generating the initial chat message. Type: Any |
Type | Description |
---|---|
dict[str, typing.Any] | str | str or dict: the processed message. |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: OpenAIWrapper | None Default: None |
None
as one trigger for it to be activated when messages
is non-empty and sender
is None
.Name | Description |
---|---|
messages | a list of messages in the conversation history. Type: list[dict[str, typing.Any]] | None Default: None |
sender | sender of an Agent instance. Type: ForwardRef(‘Agent’) | None Default: None |
**kwargs | Additional arguments to customize reply generation. Supported kwargs: - exclude (List[Callable[…, Any]]): A list of reply functions to exclude from the reply generation process. Functions in this list will be skipped even if they would normally be triggered. Type: Any |
Type | Description |
---|---|
str | dict[str, typing.Any] | None | str or dict or None: reply. None if no reply is generated. |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] | None Default: None |
sender | Type: Agent | None Default: None |
config | Type: Any | None Default: None |
Name | Description |
---|---|
chat_index | Type: int | None Default: None |
Name | Description |
---|---|
prompt | prompt for the human input. Type: str |
Type | Description |
---|---|
str | str: human input. |
clear_history
is True, the chat history with the recipient agent will be cleared.Name | Description |
---|---|
recipient | the recipient agent. Type: ConversableAgent |
clear_history | whether to clear the chat history with the agent. Default is True. Type: bool Default: True |
silent | (Experimental) whether to print the messages for this conversation. Default is False. Type: bool | None Default: False |
cache | the cache client to be used for this conversation. Default is None. Type: AbstractCache | None Default: None |
max_turns | the maximum number of turns for the chat between the two agents. One turn means one conversation round trip. Note that this is different from max_consecutive_auto_reply which is the maximum number of consecutive auto replies; and it is also different from max_rounds in GroupChat which is the maximum number of rounds in a group chat session.If max_turns is set to None, the chat will continue until a termination condition is met. Default is None. Type: int | None Default: None |
summary_method | a method to get a summary from the chat. Default is DEFAULT_SUMMARY_METHOD, i.e., “last_msg”. Supported strings are “last_msg” and “reflection_with_llm”: - when set to “last_msg”, it returns the last message of the dialog as the summary. - when set to “reflection_with_llm”, it returns a summary extracted using an llm client. llm_config must be set in either the recipient or sender.A callable summary_method should take the recipient and sender agent in a chat as input and return a string of summary. E.g., def my_summary_method( sender: ConversableAgent, recipient: ConversableAgent, summary_args: dict, ): return recipient.last_message(sender)["content"] Type: str | Callable[…, Any] | None Default: ‘last_msg’ |
summary_args | a dictionary of arguments to be passed to the summary_method. One example key is “summary_prompt”, and value is a string of text used to prompt a LLM-based agent (the sender or recipient agent) to reflect on the conversation and extract a summary when summary_method is “reflection_with_llm”. The default summary_prompt is DEFAULT_SUMMARY_PROMPT, i.e., “Summarize takeaway from the conversation. Do not add any introductory phrases. If the intended request is NOT properly addressed, please point it out.” Another available key is “summary_role”, which is the role of the message sent to the agent in charge of summarizing. Default is “system”. Type: dict[str, typing.Any] | None Default: {} |
message | the initial message to be sent to the recipient. Needs to be provided. Otherwise, input() will be called to get the initial message. - If a string or a dict is provided, it will be used as the initial message. generate_init_message is called to generate the initial message for the agent based on this string and the context.If dict, it may contain the following reserved fields (either content or tool_calls need to be provided). 1. “content”: content of the message, can be None. 2. “function_call”: a dictionary containing the function name and arguments. (deprecated in favor of “tool_calls”) 3. “tool_calls”: a list of dictionaries containing the function name and arguments. 4. “role”: role of the message, can be “assistant”, “user”, “function”. This field is only needed to distinguish between “function” or “assistant”/“user”. 5. “name”: In most cases, this field is not needed. When the role is “function”, this field is needed to indicate the function name. 6. “context” (dict): the context of the message, which will be passed to OpenAIWrapper.create .- If a callable is provided, it will be called to get the initial message in the form of a string or a dict. If the returned type is dict, it may contain the reserved fields mentioned above. Example of a callable message (returning a string): def my_message( sender: ConversableAgent, recipient: ConversableAgent, context: dict ) -> Union[str, Dict]: carryover = context.get("carryover", "") if isinstance(message, list): carryover = carryover[-1] final_msg = "Write a blogpost." + "\nContext: \n" + carryover return final_msg Example of a callable message (returning a dict): def my_message( sender: ConversableAgent, recipient: ConversableAgent, context: dict ) -> Union[str, Dict]: final_msg = \{} carryover = context.get("carryover", "") if isinstance(message, list): carryover = carryover[-1] final_msg["content"] = "Write a blogpost." + "\nContext: \n" + carryover final_msg["context"] = \{"prefix": "Today I feel"} return final_msg Type: dict[str, typing.Any] | str | Callable[…, Any] | None Default: None |
**kwargs | any additional information. It has the following reserved fields: - “carryover”: a string or a list of string to specify the carryover information to be passed to this chat. If provided, we will combine this carryover (by attaching a “context: ” string and the carryover content after the message content) with the “message” content when generating the initial chat message in generate_init_message .- “verbose”: a boolean to specify whether to print the message and carryover in a chat. Default is False. Type: Any |
Type | Description |
---|---|
ChatResult | ChatResult: an ChatResult object. |
Name | Description |
---|---|
chat_queue | a list of dictionaries containing the information of the chats. Each dictionary should contain the input arguments for initiate_chat Type: list[dict[str, typing.Any]] |
Type | Description |
---|---|
list[ChatResult] | a list of ChatResult objects corresponding to the finished chats in the chat_queue. |
Name | Description |
---|---|
agent | The agent in the conversation. If None and more than one agent’s conversations are found, an error will be raised. If None and only one conversation is found, the last message of the only conversation will be returned. Type: Agent | None Default: None |
Type | Description |
---|---|
dict[str, typing.Any] | None | The last message exchanged with the agent. |
Name | Description |
---|---|
sender | Type: Agent | None Default: None |
Name | Description |
---|---|
mode | Type: list[str] | str Default: [‘actual’, ‘total’] |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] |
Name | Description |
---|---|
message | message from the sender. If the type is dict, it may contain the following reserved fields (either content or function_call need to be provided). 1. “content”: content of the message, can be None. 2. “function_call”: a dictionary containing the function name and arguments. (deprecated in favor of “tool_calls”) 3. “tool_calls”: a list of dictionaries containing the function name and arguments. 4. “role”: role of the message, can be “assistant”, “user”, “function”, “tool”. This field is only needed to distinguish between “function” or “assistant”/“user”. 5. “name”: In most cases, this field is not needed. When the role is “function”, this field is needed to indicate the function name. 6. “context” (dict): the context of the message, which will be passed to OpenAIWrapper.create. Type: dict[str, typing.Any] | str |
sender | sender of an Agent instance. Type: Agent |
request_reply | whether a reply is requested from the sender. If None, the value is determined by self.reply_at_receive[sender] .Type: bool | None Default: None |
silent | (Experimental) whether to print the message received. Type: bool | None Default: False |
Name | Description |
---|---|
name | name of the function. If None, the function name will be used (default: None). Type: str | None Default: None |
description | description of the function (default: None). Type: str | None Default: None |
serialize | whether to serialize the return value Type: bool Default: True |
silent_override | whether to suppress any override warning messages Type: bool Default: False |
Type | Description |
---|---|
Callable[[~F | Tool], Tool] | The decorator for registering a function to be used by an agent. |
Name | Description |
---|---|
name | name of the function. If None, the function name will be used (default: None). Type: str | None Default: None |
description | description of the function (default: None). It is mandatory for the initial decorator, but the following ones can omit it. Type: str | None Default: None |
api_style | (literal): the API style for function call. For Azure OpenAI API, use version 2023-12-01-preview or later. "function" style will be deprecated.For earlier version use "function" if "tool" doesn’t work.See Azure OpenAI documentation for details. Type: Literal[‘function’, ‘tool’] Default: ‘tool’ |
silent_override | whether to suppress any override warning messages. Type: bool Default: False |
Type | Description |
---|---|
Callable[[~F | Tool], Tool] | The decorator for registering a function to be used by an agent. |
Name | Description |
---|---|
function_map | a dictionary mapping function names to functions. if function_map[name] is None, the function will be removed from the function_map. Type: dict[str, typing.Callable[…, typing.Any]] |
silent_override | whether to print warnings when overriding functions. Type: bool Default: False |
Name | Description |
---|---|
condition | The condition to add (OnContextCondition, OnCondition) Type: ForwardRef(‘OnContextCondition’) | ForwardRef(‘OnCondition’) |
Name | Description |
---|---|
conditions | List of conditions to add Type: list[ForwardRef(‘OnContextCondition’) | ForwardRef(‘OnCondition’)] |
Name | Description |
---|---|
hookable_method | A hookable method name implemented by ConversableAgent. Type: str |
hook | A method implemented by a subclass of AgentCapability. Type: Callable |
Name | Description |
---|---|
model_client_cls | A custom client class that follows the Client interface Type: ModelClient |
**kwargs | The kwargs for the custom client class to be initialized with Type: Any |
Name | Description |
---|---|
chat_queue | a list of chat objects to be initiated. If use_async is used, then all messages in chat_queue must have a chat-id associated with them. Type: list[dict[str, typing.Any]] |
trigger | refer to register_reply for details.Type: type[Agent] | str | Agent | Callable[[Agent], bool] | list |
reply_func_from_nested_chats | the reply function for the nested chat. The function takes a chat_queue for nested chat, recipient agent, a list of messages, a sender agent and a config as input and returns a reply message. Default to “summary_from_nested_chats”, which corresponds to a built-in reply function that get summary from the nested chat_queue. def reply_func_from_nested_chats( chat_queue: List[Dict], recipient: ConversableAgent, messages: Optional[List[Dict]] = None, sender: Optional[Agent] = None, config: Optional[Any] = None, ) -> Tuple[bool, Union[str, Dict, None]]: Type: str | Callable[…, Any] Default: ‘summary_from_nested_chats’ |
position | Ref to register_reply for details.Default to 2. It means we first check the termination and human reply, then check the registered nested chat reply. Type: int Default: 2 |
use_async | Uses a_initiate_chats internally to start nested chats. If the original chat is initiated with a_initiate_chats, you may set this to true so nested chats do not run in sync. Type: bool | None Default: None |
**kwargs | Type: Any |
ConversableAgent.a_initiate_chat
). If an async
reply function is registered
and a chat is initialized with a sync function, ignore_async_in_sync_chat
determines the behaviour as follows: ignore_async_in_sync_chat
is set to False
(default value), an exception will be raised, and
if ignore_async_in_sync_chat
is set to True
, the reply function will be ignored.Name | Description |
---|---|
trigger | the trigger. If a class is provided, the reply function will be called when the sender is an instance of the class. If a string is provided, the reply function will be called when the sender’s name matches the string. If an agent instance is provided, the reply function will be called when the sender is the agent instance. If a callable is provided, the reply function will be called when the callable returns True. If a list is provided, the reply function will be called when any of the triggers in the list is activated. If None is provided, the reply function will be called only when the sender is None. Note: Be sure to register None as a trigger if you would like to trigger an auto-reply function with non-empty messages and sender=None .Type: type[Agent] | str | Agent | Callable[[Agent], bool] | list |
reply_func | the reply function. The function takes a recipient agent, a list of messages, a sender agent and a config as input and returns a reply message. def reply_func( recipient: ConversableAgent, messages: Optional[List[Dict]] = None, sender: Optional[Agent] = None, config: Optional[Any] = None, ) -> Tuple[bool, Union[str, Dict, None]]: Type: Callable |
position | the position of the reply function in the reply function list. The function registered later will be checked earlier by default. To change the order, set the position to a positive integer. Type: int Default: 0 |
config | the config to be passed to the reply function. When an agent is reset, the config will be reset to the original value. Type: Any | None Default: None |
reset_config | the function to reset the config. The function returns None. Signature: def reset_config(config: Any) Type: Callable[…, Any] | None Default: None |
ignore_async_in_sync_chat | whether to ignore the async reply function in sync chats. If False , an exception will be raised if an async reply function is registered and a chat is initialized with a sync function.Type: bool Default: False |
remove_other_reply_funcs | whether to remove other reply functions when registering this reply function. Type: bool Default: False |
Name | Description |
---|---|
tool | Type: Tool |
Name | Description |
---|---|
old_reply_func | the old reply function to be replaced. Type: Callable |
new_reply_func | the new reply function to replace the old one. Type: Callable |
Name | Description |
---|---|
sender | Type: Agent | None Default: None |
Name | Description |
---|---|
code | the code to be executed. Type: str |
**kwargs | other keyword arguments. Type: Any |
Type | Description |
---|---|
tuple[int, str, str | None] | A tuple of (exitcode, logs, image). exitcode (int): the exit code of the code execution. logs (str): the logs of the code execution. image (str or None): the docker image used for the code execution. |
Name | Description |
---|---|
message | message to be sent. The message could contain the following fields: - content (str or List): Required, the content of the message. (Can be None) - function_call (str): the name of the function to be called. - name (str): the name of the function to be called. - role (str): the role of the message, any role that is not “function” will be modified to “assistant”. - context (dict): the context of the message, which will be passed to OpenAIWrapper.create. For example, one agent can send a message A as: Type: dict[str, typing.Any] | str |
recipient | the recipient of the message. Type: Agent |
request_reply | whether to request a reply from the recipient. Type: bool | None Default: None |
silent | (Experimental) whether to print the message sent. Type: bool | None Default: False |
Name | Description |
---|---|
chat_queue | a list of dictionaries containing the information of the chats. Each dictionary should contain the input arguments for initiate_chat Type: list[dict[str, typing.Any]] |
Type | Description |
---|---|
list[RunResponseProtocol] | a list of ChatResult objects corresponding to the finished chats in the chat_queue. |
Name | Description |
---|---|
tools | a list of tools to be set. Type: list[Tool] |
Name | Description |
---|---|
sender | Type: Agent | None Default: None |
Name | Description |
---|---|
tools | a list of tools to be unset. Type: list[Tool] |
Name | Description |
---|---|
messages | Type: list[dict[str, typing.Any]] |
Name | Description |
---|---|
func_sig | description/name of the function to update/remove to the model. See: https://platform.openai.com/docs/api-reference/chat/create#chat/create-functions Type: dict[str, typing.Any] | str |
is_remove | whether removing the function from llm_config with name ‘func_sig’ Type: None |
silent_override | whether to print warnings when overriding functions. Type: bool Default: False |
Name | Description |
---|---|
value | the maximum number of consecutive auto replies. Type: int |
sender | when the sender is provided, only update the max_consecutive_auto_reply for that sender. Type: Agent | None Default: None |
Name | Description |
---|---|
system_message | system message for the ChatCompletion inference. Type: str |
Name | Description |
---|---|
tool_sig | description/name of the tool to update/remove to the model. See: https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools Type: dict[str, typing.Any] | str |
is_remove | whether removing the tool from llm_config with name ‘tool_sig’ Type: bool |
silent_override | whether to print warnings when overriding functions. Type: bool Default: False |