qdrant_retrieve_user_proxy_agent
autogen.agentchat.contrib.qdrant_retrieve_user_proxy_agent.query_qdrant
query_qdrant
Perform a similarity search with filters on a Qdrant collection
Parameters:Name | Description |
---|---|
query_texts | the query texts. Type: list[str] |
n_results | the number of results to return. Default is 10. Type: int Default: 10 |
client | the QdrantClient instance. A default in-memory client will be instantiated if None. Type: QdrantClient Default: None |
collection_name | the name of the collection. Default is “all-my-documents”. Type: str Default: ‘all-my-documents’ |
search_string | the search string. Default is "". Type: str Default: ” |
embedding_model | the embedding model to use. Default is “all-MiniLM-L6-v2”. Will be ignored if embedding_function is not None. Type: str Default: ‘BAAI/bge-small-en-v1.5’ |
qdrant_client_options | (Optional, dict): the options for instantiating the qdrant client. Reference: https://github.com/qdrant/qdrant-client/blob/master/qdrant_client/qdrant_client.py#L36-L58. Type: dict[str, typing.Any] | None Default: {} |
Type | Description |
---|---|
list[list[‘QueryResponse’]] | list[list[QueryResponse]]: the query result. The format is: class QueryResponse(BaseModel, extra=“forbid”): # type: ignore id: Union[str, int] embedding: Optional[List[float]] metadata: Dict[str, Any] document: str score: float |