Examples
- Examples by Category
- Examples by Notebook
- Notebooks
- Using RetrieveChat Powered by MongoDB Atlas for Retrieve Augmented Code Generation and Question Answering
- Mitigating Prompt hacking with JSON Mode in Autogen
- Using RetrieveChat for Retrieve Augmented Code Generation and Question Answering
- Using RetrieveChat Powered by PGVector for Retrieve Augmented Code Generation and Question Answering
- Using RetrieveChat with Qdrant for Retrieve Augmented Code Generation and Question Answering
- Agent Tracking with AgentOps
- AgentOptimizer: An Agentic Way to Train Your LLM Agent
- Task Solving with Code Generation, Execution and Debugging
- Assistants with Azure Cognitive Search and Azure Identity
- CaptainAgent
- Cross-Framework LLM Tool for CaptainAgent
- Usage tracking with AutoGen
- Agent Chat with custom model loading
- Agent Chat with Multimodal Models: DALLE and GPT-4V
- Use AutoGen in Databricks with DBRX
- Auto Generated Agent Chat: Task Solving with Provided Tools as Functions
- Task Solving with Provided Tools as Functions (Asynchronous Function Calls)
- Writing a software application using function calls
- Currency Calculator: Task Solving with Provided Tools as Functions
- Using FalkorGraphRagCapability with agents for GraphRAG Question & Answering
- Using Neo4j's graph database with AG2 agents for Question & Answering
- Groupchat with Llamaindex agents
- Group Chat
- Group Chat with Retrieval Augmented Generation
- Group Chat with Customized Speaker Selection Method
- FSM - User can input speaker transition constraints
- Perform Research with Multi-Agent Group Chat
- StateFlow: Build Workflows through State-Oriented Actions
- Group Chat with Coder and Visualization Critic
- Using Guidance with AutoGen
- Auto Generated Agent Chat: Task Solving with Code Generation, Execution, Debugging & Human Feedback
- Generate Dalle Images With Conversable Agents
- Auto Generated Agent Chat: Function Inception
- Auto Generated Agent Chat: Task Solving with Langchain Provided Tools as Functions
- Engaging with Multimodal Models: GPT-4V in AutoGen
- Agent Chat with Multimodal Models: LLaVA
- Runtime Logging with AutoGen
- Agent with memory using Mem0
- Solving Multiple Tasks in a Sequence of Async Chats
- Solving Multiple Tasks in a Sequence of Chats
- Nested Chats for Tool Use in Conversational Chess
- Conversational Chess using non-OpenAI clients
- Solving Complex Tasks with A Sequence of Nested Chats
- Solving Complex Tasks with Nested Chats
- OptiGuide with Nested Chats in AutoGen
- Chat with OpenAI Assistant using function call in AutoGen: OSS Insights for Advanced GitHub Data Analysis
- Auto Generated Agent Chat: Group Chat with GPTAssistantAgent
- RAG OpenAI Assistants in AutoGen
- OpenAI Assistants in AutoGen
- Auto Generated Agent Chat: GPTAssistant with Code Interpreter
- Agent Observability with OpenLIT
- Auto Generated Agent Chat: Collaborative Task Solving with Coding and Planning Agent
- RealtimeAgent in a Swarm Orchestration
- RealtimeAgent with local websocket connection
- ReasoningAgent - Advanced LLM Reasoning with Multiple Search Strategies
- SocietyOfMindAgent
- SQL Agent for Spider text-to-SQL benchmark
- Interactive LLM Agent Dealing with Data Stream
- Structured output
- WebSurferAgent
- Swarm Orchestration with AG2
- Enhanced Swarm Orchestration with AG2
- Using a local Telemetry server to monitor a GraphRAG agent
- Trip planning with a FalkorDB GraphRAG agent using a Swarm
- (Legacy) Implement Swarm-style orchestration with GroupChat
- Chatting with a teachable agent
- Making OpenAI Assistants Teachable
- Auto Generated Agent Chat: Teaching AI New Skills via Natural Language Interaction
- Preprocessing Chat History with `TransformMessages`
- Auto Generated Agent Chat: Collaborative Task Solving with Multiple Agents and Human Users
- Translating Video audio using Whisper and GPT-3.5-turbo
- Auto Generated Agent Chat: Solving Tasks Requiring Web Info
- Web Scraping using Apify Tools
- Websockets: Streaming input and output using websockets
- Solving Multiple Tasks in a Sequence of Chats with Different Conversable Agent Pairs
- Demonstrating the `AgentEval` framework using the task of solving math problems as an example
- Agent Chat with Async Human Inputs
- Automatically Build Multi-agent System from Agent Library
- AutoBuild
- A Uniform interface to call different LLMs
- Config loader utility functions
- From Dad Jokes To Sad Jokes: Function Calling with GPTAssistantAgent
- Language Agent Tree Search
- Cross-Framework LLM Tool Integration with AG2
- Application Gallery
Auto Generated Agent Chat: Task Solving with Langchain Provided Tools as Functions
Use Langchain tools.
AutoGen offers conversable agents powered by LLM, tool, or human, which can be used to perform tasks collectively via automated chat. This framework allows tool use and human participants through multi-agent conversation. Please find documentation about this feature here.
In this notebook, we demonstrate how to use AssistantAgent
and
UserProxyAgent
to make function calls with the new feature of OpenAI
models (in model version 0613) with a set of Langchain-provided tools
and toolkits, to demonstrate how to leverage the 35+ tools available. A
specified prompt and function configs must be passed to AssistantAgent
to initialize the agent. The corresponding functions must be passed to
UserProxyAgent
, which will execute any function calls made by
AssistantAgent
. Besides this requirement of matching descriptions with
functions, we recommend checking the system message in the
AssistantAgent
to ensure the instructions align with the function call
descriptions.
Requirements
AutoGen requires Python>=3.9
. To run this notebook example, please
install pyautogen
and Langchain
:
pip install pyautogen Langchain
%pip install "pyautogen>=0.2.3" Langchain
Set your API Endpoint
The
config_list_from_models
function tries to create a list of configurations using Azure OpenAI
endpoints and OpenAI endpoints for the provided list of models. It
assumes the api keys and api bases are stored in the corresponding
environment variables or local txt files:
- OpenAI API key: os.environ[“OPENAI_API_KEY”] or
openai_api_key_file="key_openai.txt"
. - Azure OpenAI API key: os.environ[“AZURE_OPENAI_API_KEY”] or
aoai_api_key_file="key_aoai.txt"
. Multiple keys can be stored, one per line. - Azure OpenAI API base: os.environ[“AZURE_OPENAI_API_BASE”] or
aoai_api_base_file="base_aoai.txt"
. Multiple bases can be stored, one per line.
It’s OK to have only the OpenAI API key, or only the Azure OpenAI API key + base. If you open this notebook in google colab, you can upload your files by clicking the file icon on the left panel and then choosing “upload file” icon.
The following code excludes Azure OpenAI endpoints from the config list
because some endpoints don’t support functions yet. Remove the exclude
argument if they do.
import math
import os
from typing import Optional, Type
# Starndard Langchain example
from langchain.agents import create_spark_sql_agent
from langchain.agents.agent_toolkits import SparkSQLToolkit
from langchain.chat_models import ChatOpenAI
# Import things that are needed generically
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool
from langchain.tools.file_management.read import ReadFileTool
from langchain.utilities.spark_sql import SparkSQL
from pyspark.sql import SparkSession
import autogen
config_list = autogen.config_list_from_json(
"OAI_CONFIG_LIST",
filter_dict={
"model": ["gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"],
},
)
It first looks for environment variable “OAI_CONFIG_LIST” which needs to be a valid json string. If that variable is not found, it then looks for a json file named “OAI_CONFIG_LIST”. It filters the configs by models (you can filter by other keys as well). Only the models with matching names are kept in the list based on the filter condition.
The config list looks like the following:
config_list = [
{
'model': 'gpt-4',
'api_key': '<your OpenAI API key here>',
},
{
'model': 'gpt-3.5-turbo',
'api_key': '<your Azure OpenAI API key here>',
'base_url': '<your Azure OpenAI API base here>',
'api_type': 'azure',
'api_version': '2024-02-15-preview',
},
{
'model': 'gpt-3.5-turbo-16k',
'api_key': '<your Azure OpenAI API key here>',
'base_url': '<your Azure OpenAI API base here>',
'api_type': 'azure',
'api_version': '2024-02-15-preview',
},
]
You can set the value of config_list in any way you prefer. Please refer to this notebook for full code examples of the different methods.
Making Function Calls
In this example, we demonstrate function call execution with
AssistantAgent
and UserProxyAgent
. With the default system prompt of
AssistantAgent
, we allow the LLM assistant to perform tasks with code,
and the UserProxyAgent
would extract code blocks from the LLM response
and execute them. With the new “function_call” feature, we define
functions and specify the description of the function in the OpenAI
config for the AssistantAgent
. Then we register the functions in
UserProxyAgent
.
class CircumferenceToolInput(BaseModel):
radius: float = Field()
class CircumferenceTool(BaseTool):
name = "circumference_calculator"
description = "Use this tool when you need to calculate a circumference using the radius of a circle"
args_schema: Type[BaseModel] = CircumferenceToolInput
def _run(self, radius: float):
return float(radius) * 2.0 * math.pi
def get_file_path_of_example():
# Get the current working directory
current_dir = os.getcwd()
# Go one directory up
parent_dir = os.path.dirname(current_dir)
# Move to the target directory
target_folder = os.path.join(parent_dir, "test")
# Construct the path to your target file
file_path = os.path.join(target_folder, "test_files/radius.txt")
return file_path
# Define a function to generate llm_config from a LangChain tool
def generate_llm_config(tool):
# Define the function schema based on the tool's args_schema
function_schema = {
"name": tool.name.lower().replace(" ", "_"),
"description": tool.description,
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
}
if tool.args is not None:
function_schema["parameters"]["properties"] = tool.args
return function_schema
# Instantiate the ReadFileTool
read_file_tool = ReadFileTool()
custom_tool = CircumferenceTool()
# Construct the llm_config
llm_config = {
# Generate functions config for the Tool
"functions": [
generate_llm_config(custom_tool),
generate_llm_config(read_file_tool),
],
"config_list": config_list, # Assuming you have this defined elsewhere
"timeout": 120,
}
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={
"work_dir": "coding",
"use_docker": False,
}, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.
)
# Register the tool and start the conversation
user_proxy.register_function(
function_map={
custom_tool.name: custom_tool._run,
read_file_tool.name: read_file_tool._run,
}
)
chatbot = autogen.AssistantAgent(
name="chatbot",
system_message="For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
llm_config=llm_config,
)
user_proxy.initiate_chat(
chatbot,
message=f"Read the file with the path {get_file_path_of_example()}, then calculate the circumference of a circle that has a radius of that files contents.", # 7.81mm in the file
llm_config=llm_config,
)
user_proxy (to chatbot):
Read the file with the path 'Test.txt', then calculate the circumference of a circle that has a radius of that files contents.
--------------------------------------------------------------------------------
chatbot (to user_proxy):
***** Suggested function Call: read_file *****
Arguments:
{
"file_path": "Test.txt"
}
**********************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION read_file...
user_proxy (to chatbot):
***** Response from calling function "read_file" *****
7.81mm
******************************************************
--------------------------------------------------------------------------------
chatbot (to user_proxy):
***** Suggested function Call: circumference_calculator *****
Arguments:
{
"radius": 7.81
}
*************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION circumference_calculator...
user_proxy (to chatbot):
***** Response from calling function "circumference_calculator" *****
49.071677249072565
*********************************************************************
--------------------------------------------------------------------------------
chatbot (to user_proxy):
The circumference of a circle with a radius of 7.81mm is approximately 49.071mm.
--------------------------------------------------------------------------------
user_proxy (to chatbot):
--------------------------------------------------------------------------------
chatbot (to user_proxy):
TERMINATE
--------------------------------------------------------------------------------
A PySpark Example
%pip install pyspark
Requirement already satisfied: pyspark in /usr/local/lib/python3.10/dist-packages (3.5.0)
Requirement already satisfied: py4j==0.10.9.7 in /usr/local/lib/python3.10/dist-packages (from pyspark) (0.10.9.7)
spark = SparkSession.builder.getOrCreate()
schema = "langchain_example"
spark.sql(f"CREATE DATABASE IF NOT EXISTS {schema}")
spark.sql(f"USE {schema}")
csv_file_path = "./sample_data/california_housing_train.csv"
table = "california_housing_train"
spark.read.csv(csv_file_path, header=True, inferSchema=True).write.option(
"path", "file:/content/spark-warehouse/langchain_example.db/california_housing_train"
).mode("overwrite").saveAsTable(table)
spark.table(table).show()
+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+
|longitude|latitude|housing_median_age|total_rooms|total_bedrooms|population|households|median_income|median_house_value|
+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+
| -114.31| 34.19| 15.0| 5612.0| 1283.0| 1015.0| 472.0| 1.4936| 66900.0|
| -114.47| 34.4| 19.0| 7650.0| 1901.0| 1129.0| 463.0| 1.82| 80100.0|
| -114.56| 33.69| 17.0| 720.0| 174.0| 333.0| 117.0| 1.6509| 85700.0|
| -114.57| 33.64| 14.0| 1501.0| 337.0| 515.0| 226.0| 3.1917| 73400.0|
| -114.57| 33.57| 20.0| 1454.0| 326.0| 624.0| 262.0| 1.925| 65500.0|
| -114.58| 33.63| 29.0| 1387.0| 236.0| 671.0| 239.0| 3.3438| 74000.0|
| -114.58| 33.61| 25.0| 2907.0| 680.0| 1841.0| 633.0| 2.6768| 82400.0|
| -114.59| 34.83| 41.0| 812.0| 168.0| 375.0| 158.0| 1.7083| 48500.0|
| -114.59| 33.61| 34.0| 4789.0| 1175.0| 3134.0| 1056.0| 2.1782| 58400.0|
| -114.6| 34.83| 46.0| 1497.0| 309.0| 787.0| 271.0| 2.1908| 48100.0|
| -114.6| 33.62| 16.0| 3741.0| 801.0| 2434.0| 824.0| 2.6797| 86500.0|
| -114.6| 33.6| 21.0| 1988.0| 483.0| 1182.0| 437.0| 1.625| 62000.0|
| -114.61| 34.84| 48.0| 1291.0| 248.0| 580.0| 211.0| 2.1571| 48600.0|
| -114.61| 34.83| 31.0| 2478.0| 464.0| 1346.0| 479.0| 3.212| 70400.0|
| -114.63| 32.76| 15.0| 1448.0| 378.0| 949.0| 300.0| 0.8585| 45000.0|
| -114.65| 34.89| 17.0| 2556.0| 587.0| 1005.0| 401.0| 1.6991| 69100.0|
| -114.65| 33.6| 28.0| 1678.0| 322.0| 666.0| 256.0| 2.9653| 94900.0|
| -114.65| 32.79| 21.0| 44.0| 33.0| 64.0| 27.0| 0.8571| 25000.0|
| -114.66| 32.74| 17.0| 1388.0| 386.0| 775.0| 320.0| 1.2049| 44000.0|
| -114.67| 33.92| 17.0| 97.0| 24.0| 29.0| 15.0| 1.2656| 27500.0|
+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+
only showing top 20 rows
# Note, you can also connect to Spark via Spark connect. For example:
# db = SparkSQL.from_uri("sc://localhost:15002", schema=schema)
spark_sql = SparkSQL(schema=schema)
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k")
toolkit = SparkSQLToolkit(db=spark_sql, llm=llm)
agent_executor = create_spark_sql_agent(llm=llm, toolkit=toolkit, verbose=True)
# Starndard Langchain example
agent_executor.run("Describe the california_housing_train table")
> Entering new AgentExecutor chain...
Action: list_tables_sql_db
Action Input: ""
Observation: california_housing_train
Thought:I see that there is a table called "california_housing_train" in the database. I can use the "schema_sql_db" tool to get more information about this table.
Action: schema_sql_db
Action Input: "california_housing_train"
Observation: CREATE TABLE spark_catalog.langchain_example.california_housing_train (
longitude DOUBLE,
latitude DOUBLE,
housing_median_age DOUBLE,
total_rooms DOUBLE,
total_bedrooms DOUBLE,
population DOUBLE,
households DOUBLE,
median_income DOUBLE,
median_house_value DOUBLE)
;
/*
3 rows from california_housing_train table:
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value
-114.31 34.19 15.0 5612.0 1283.0 1015.0 472.0 1.4936 66900.0
-114.47 34.4 19.0 7650.0 1901.0 1129.0 463.0 1.82 80100.0
-114.56 33.69 17.0 720.0 174.0 333.0 117.0 1.6509 85700.0
*/
Thought:The "california_housing_train" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value. It contains information about housing in California. I can now answer the question.
Action: None
Final Answer: The "california_housing_train" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value.
> Finished chain.
'The "california_housing_train" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value.'
# LangChain direct tool usage instead of toolkit example
# from langchain.tools.spark_sql.tool import (
# InfoSparkSQLTool,
# ListSparkSQLTool,
# QueryCheckerTool,
# QuerySparkSQLTool,
# )
# debug_toolkit = [
# QuerySparkSQLTool(db=spark_sql),
# InfoSparkSQLTool(db=spark_sql),
# ListSparkSQLTool(db=spark_sql),
# QueryCheckerTool(db=spark_sql, llm=llm),
# ]
# Now use AutoGen with Langchain Tool Bridgre
tools = []
function_map = {}
for tool in toolkit.get_tools(): # debug_toolkit if you want to use tools directly
tool_schema = generate_llm_config(tool)
print(tool_schema)
tools.append(tool_schema)
function_map[tool.name] = tool._run
# Construct the llm_config
llm_config = {
"functions": tools,
"config_list": config_list, # Assuming you have this defined elsewhere
"timeout": 120,
}
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={
"work_dir": "coding",
"use_docker": False,
}, # Please set use_docker=True if docker is available to run the generated code. Using docker is safer than running the generated code directly.
)
print(function_map)
# Register the tool and start the conversation
user_proxy.register_function(function_map=function_map)
chatbot = autogen.AssistantAgent(
name="chatbot",
system_message="For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
llm_config=llm_config,
)
user_proxy.initiate_chat(
chatbot,
message="Describe the table names california_housing_train",
llm_config=llm_config,
)
{'name': 'query_sql_db', 'description': '\n Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.\n If the query is not correct, an error message will be returned.\n If an error is returned, rewrite the query, check the query, and try again.\n ', 'parameters': {'type': 'object', 'properties': {'query': {'title': 'Query', 'type': 'string'}}, 'required': []}}
{'name': 'schema_sql_db', 'description': '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\n Be sure that the tables actually exist by calling list_tables_sql_db first!\n\n Example Input: "table1, table2, table3"\n ', 'parameters': {'type': 'object', 'properties': {'table_names': {'title': 'Table Names', 'type': 'string'}}, 'required': []}}
{'name': 'list_tables_sql_db', 'description': 'Input is an empty string, output is a comma separated list of tables in the Spark SQL.', 'parameters': {'type': 'object', 'properties': {'tool_input': {'title': 'Tool Input', 'default': '', 'type': 'string'}}, 'required': []}}
{'name': 'query_checker_sql_db', 'description': '\n Use this tool to double check if your query is correct before executing it.\n Always use this tool before executing a query with query_sql_db!\n ', 'parameters': {'type': 'object', 'properties': {'query': {'title': 'Query', 'type': 'string'}}, 'required': []}}
user_proxy (to chatbot):
Describe the table names california_housing_train
--------------------------------------------------------------------------------
chatbot (to user_proxy):
***** Suggested function Call: schema_sql_db *****
Arguments:
{
"table_names": "california_housing_train"
}
**************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION schema_sql_db...
user_proxy (to chatbot):
***** Response from calling function "schema_sql_db" *****
CREATE TABLE spark_catalog.langchain_example.california_housing_train (
longitude DOUBLE,
latitude DOUBLE,
housing_median_age DOUBLE,
total_rooms DOUBLE,
total_bedrooms DOUBLE,
population DOUBLE,
households DOUBLE,
median_income DOUBLE,
median_house_value DOUBLE)
;
/*
3 rows from california_housing_train table:
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value
-114.31 34.19 15.0 5612.0 1283.0 1015.0 472.0 1.4936 66900.0
-114.47 34.4 19.0 7650.0 1901.0 1129.0 463.0 1.82 80100.0
-114.56 33.69 17.0 720.0 174.0 333.0 117.0 1.6509 85700.0
*/
**********************************************************
--------------------------------------------------------------------------------
chatbot (to user_proxy):
The california_housing_train table has the following schema:
- longitude: DOUBLE
- latitude: DOUBLE
- housing_median_age: DOUBLE
- total_rooms: DOUBLE
- total_bedrooms: DOUBLE
- population: DOUBLE
- households: DOUBLE
- median_income: DOUBLE
- median_house_value: DOUBLE
Here are sample rows from the table:
| longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value |
|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|--------------------|
| -114.31 | 34.19 | 15.0 | 5612.0 | 1283.0 | 1015.0 | 472.0 | 1.4936 | 66900.0 |
| -114.47 | 34.4 | 19.0 | 7650.0 | 1901.0 | 1129.0 | 463.0 | 1.82 | 80100.0 |
| -114.56 | 33.69 | 17.0 | 720.0 | 174.0 | 333.0 | 117.0 | 1.6509 | 85700.0 |
--------------------------------------------------------------------------------
user_proxy (to chatbot):
--------------------------------------------------------------------------------
chatbot (to user_proxy):
TERMINATE
--------------------------------------------------------------------------------