Open In Colab Open on GitHub

In this notebook, we demonstrate how to use whisper and GPT-3.5-turbo with AssistantAgent and UserProxyAgent to recognize and translate the speech sound from a video file and add the timestamp like a subtitle file based on agentchat_function_call.ipynb

Requirements

:::info Requirements
Some extra dependencies are needed for this notebook, which can be installed via pip:

```bash
pip install autogen openai openai-whisper
```

For more information, please refer to the [installation guide](/docs/installation/).
:::

Set your API Endpoint

It is recommended to store your OpenAI API key in the environment variable. For example, store it in OPENAI_API_KEY.

import os

config_list = [
    {
        "model": "gpt-4",
        "api_key": os.getenv("OPENAI_API_KEY"),
    }
]
:::tip
Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration).
:::

Example and Output

Below is an example of speech recognition from a Peppa Pig cartoon video clip originally in English and translated into Chinese. ‘FFmpeg’ does not support online files. To run the code on the example video, you need to download the example video locally. You can change your_file_path to your local video file path.

from typing import Annotated, List

import whisper
from openai import OpenAI

import autogen

source_language = "English"
target_language = "Chinese"
key = os.getenv("OPENAI_API_KEY")
target_video = "your_file_path"

assistant = autogen.AssistantAgent(
    name="assistant",
    system_message="For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
    llm_config={"config_list": config_list, "timeout": 120},
)

user_proxy = autogen.UserProxyAgent(
    name="user_proxy",
    is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
    human_input_mode="NEVER",
    max_consecutive_auto_reply=10,
    code_execution_config={},
)


def translate_text(input_text, source_language, target_language):
    client = OpenAI(api_key=key)

    response = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {
                "role": "user",
                "content": f"Directly translate the following {source_language} text to a pure {target_language} "
                f"video subtitle text without additional explanation.: '{input_text}'",
            },
        ],
        max_tokens=1500,
    )

    # Correctly accessing the response content
    translated_text = response.choices[0].message.content if response.choices else None
    return translated_text


@user_proxy.register_for_execution()
@assistant.register_for_llm(description="using translate_text function to translate the script")
def translate_transcript(
    source_language: Annotated[str, "Source language"], target_language: Annotated[str, "Target language"]
) -> str:
    with open("transcription.txt", "r") as f:
        lines = f.readlines()

    translated_transcript = []

    for line in lines:
        # Split each line into timestamp and text parts
        parts = line.strip().split(": ")
        if len(parts) == 2:
            timestamp, text = parts[0], parts[1]
            # Translate only the text part
            translated_text = translate_text(text, source_language, target_language)
            # Reconstruct the line with the translated text and the preserved timestamp
            translated_line = f"{timestamp}: {translated_text}"
            translated_transcript.append(translated_line)
        else:
            # If the line doesn't contain a timestamp, add it as is
            translated_transcript.append(line.strip())

    return "\n".join(translated_transcript)


@user_proxy.register_for_execution()
@assistant.register_for_llm(description="recognize the speech from video and transfer into a txt file")
def recognize_transcript_from_video(filepath: Annotated[str, "path of the video file"]) -> List[dict]:
    try:
        # Load model
        model = whisper.load_model("small")

        # Transcribe audio with detailed timestamps
        result = model.transcribe(filepath, verbose=True)

        # Initialize variables for transcript
        transcript = []
        sentence = ""
        start_time = 0

        # Iterate through the segments in the result
        for segment in result["segments"]:
            # If new sentence starts, save the previous one and reset variables
            if segment["start"] != start_time and sentence:
                transcript.append(
                    {
                        "sentence": sentence.strip() + ".",
                        "timestamp_start": start_time,
                        "timestamp_end": segment["start"],
                    }
                )
                sentence = ""
                start_time = segment["start"]

            # Add the word to the current sentence
            sentence += segment["text"] + " "

        # Add the final sentence
        if sentence:
            transcript.append(
                {
                    "sentence": sentence.strip() + ".",
                    "timestamp_start": start_time,
                    "timestamp_end": result["segments"][-1]["end"],
                }
            )

        # Save the transcript to a file
        with open("transcription.txt", "w") as file:
            for item in transcript:
                sentence = item["sentence"]
                start_time, end_time = item["timestamp_start"], item["timestamp_end"]
                file.write(f"{start_time}s to {end_time}s: {sentence}\n")

        return transcript

    except FileNotFoundError:
        return "The specified audio file could not be found."
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"

Now, start the chat:

user_proxy.initiate_chat(
    assistant,
    message=f"For the video located in {target_video}, recognize the speech and transfer it into a script file, "
    f"then translate from {source_language} text to a {target_language} video subtitle text. ",
)
user_proxy (to chatbot):

For the video located in E:\pythonProject\gpt_detection\peppa pig.mp4, recognize the speech and transfer it into a script file, then translate from English text to a Chinese video subtitle text. 

--------------------------------------------------------------------------------
chatbot (to user_proxy):

***** Suggested function Call: recognize_transcript_from_video *****
Arguments: 
{
"audio_filepath": "E:\\pythonProject\\gpt_detection\\peppa pig.mp4"
}
********************************************************************

--------------------------------------------------------------------------------

>>>>>>>> EXECUTING FUNCTION recognize_transcript_from_video...
Detecting language using up to the first 30 seconds. Use `--language` to specify the language
Detected language: English
[00:00.000 --> 00:03.000]  This is my little brother George.
[00:03.000 --> 00:05.000]  This is Mummy Pig.
[00:05.000 --> 00:07.000]  And this is Daddy Pig.
[00:07.000 --> 00:09.000]  Pee-pah Pig.
[00:09.000 --> 00:11.000]  Desert Island.
[00:11.000 --> 00:14.000]  Pepper and George are at Danny Dog's house.
[00:14.000 --> 00:17.000]  Captain Dog is telling stories of when he was a sailor.
[00:17.000 --> 00:20.000]  I sailed all around the world.
[00:20.000 --> 00:22.000]  And then I came home again.
[00:22.000 --> 00:25.000]  But now I'm back for good.
[00:25.000 --> 00:27.000]  I'll never forget you.
[00:27.000 --> 00:29.000]  Daddy, do you miss the sea?
[00:29.000 --> 00:31.000]  Well, sometimes.
[00:31.000 --> 00:36.000]  It is Grandad Dog, Grandpa Pig and Grumpy Rabbit.
[00:36.000 --> 00:37.000]  Hello.
[00:37.000 --> 00:40.000]  Can Captain Dog come out to play?
[00:40.000 --> 00:43.000]  What? We are going on a fishing trip.
[00:43.000 --> 00:44.000]  On a boat?
[00:44.000 --> 00:45.000]  On the sea!
[00:45.000 --> 00:47.000]  OK, let's go.
[00:47.000 --> 00:51.000]  But Daddy, you said you'd never get on a boat again.
[00:51.000 --> 00:54.000]  I'm not going to get on a boat again.
[00:54.000 --> 00:57.000]  You said you'd never get on a boat again.
[00:57.000 --> 01:00.000]  Oh, yes. So I did.
[01:00.000 --> 01:02.000]  OK, bye-bye.
[01:02.000 --> 01:03.000]  Bye.
user_proxy (to chatbot):

***** Response from calling function "recognize_transcript_from_video" *****
[{'sentence': 'This is my little brother George..', 'timestamp_start': 0, 'timestamp_end': 3.0}, {'sentence': 'This is Mummy Pig..', 'timestamp_start': 3.0, 'timestamp_end': 5.0}, {'sentence': 'And this is Daddy Pig..', 'timestamp_start': 5.0, 'timestamp_end': 7.0}, {'sentence': 'Pee-pah Pig..', 'timestamp_start': 7.0, 'timestamp_end': 9.0}, {'sentence': 'Desert Island..', 'timestamp_start': 9.0, 'timestamp_end': 11.0}, {'sentence': "Pepper and George are at Danny Dog's house..", 'timestamp_start': 11.0, 'timestamp_end': 14.0}, {'sentence': 'Captain Dog is telling stories of when he was a sailor..', 'timestamp_start': 14.0, 'timestamp_end': 17.0}, {'sentence': 'I sailed all around the world..', 'timestamp_start': 17.0, 'timestamp_end': 20.0}, {'sentence': 'And then I came home again..', 'timestamp_start': 20.0, 'timestamp_end': 22.0}, {'sentence': "But now I'm back for good..", 'timestamp_start': 22.0, 'timestamp_end': 25.0}, {'sentence': "I'll never forget you..", 'timestamp_start': 25.0, 'timestamp_end': 27.0}, {'sentence': 'Daddy, do you miss the sea?.', 'timestamp_start': 27.0, 'timestamp_end': 29.0}, {'sentence': 'Well, sometimes..', 'timestamp_start': 29.0, 'timestamp_end': 31.0}, {'sentence': 'It is Grandad Dog, Grandpa Pig and Grumpy Rabbit..', 'timestamp_start': 31.0, 'timestamp_end': 36.0}, {'sentence': 'Hello..', 'timestamp_start': 36.0, 'timestamp_end': 37.0}, {'sentence': 'Can Captain Dog come out to play?.', 'timestamp_start': 37.0, 'timestamp_end': 40.0}, {'sentence': 'What? We are going on a fishing trip..', 'timestamp_start': 40.0, 'timestamp_end': 43.0}, {'sentence': 'On a boat?.', 'timestamp_start': 43.0, 'timestamp_end': 44.0}, {'sentence': 'On the sea!.', 'timestamp_start': 44.0, 'timestamp_end': 45.0}, {'sentence': "OK, let's go..", 'timestamp_start': 45.0, 'timestamp_end': 47.0}, {'sentence': "But Daddy, you said you'd never get on a boat again..", 'timestamp_start': 47.0, 'timestamp_end': 51.0}, {'sentence': "I'm not going to get on a boat again..", 'timestamp_start': 51.0, 'timestamp_end': 54.0}, {'sentence': "You said you'd never get on a boat again..", 'timestamp_start': 54.0, 'timestamp_end': 57.0}, {'sentence': 'Oh, yes. So I did..', 'timestamp_start': 57.0, 'timestamp_end': 60.0}, {'sentence': 'OK, bye-bye..', 'timestamp_start': 60.0, 'timestamp_end': 62.0}, {'sentence': 'Bye..', 'timestamp_start': 62.0, 'timestamp_end': 63.0}]
****************************************************************************

--------------------------------------------------------------------------------
chatbot (to user_proxy):

***** Suggested function Call: translate_transcript *****
Arguments: 
{
"source_language": "en",
"target_language": "zh"
}
*********************************************************

--------------------------------------------------------------------------------

>>>>>>>> EXECUTING FUNCTION translate_transcript...
user_proxy (to chatbot):

***** Response from calling function "translate_transcript" *****
0s to 3.0s: 这是我小弟弟乔治。
3.0s to 5.0s: 这是妈妈猪。
5.0s to 7.0s: 这位是猪爸爸..
7.0s to 9.0s: 'Peppa Pig...' (皮皮猪)
9.0s to 11.0s: "荒岛.."
11.0s to 14.0s: 胡椒和乔治在丹尼狗的家里。
14.0s to 17.0s: 船长狗正在讲述他作为一名海员时的故事。
17.0s to 20.0s: 我环游了全世界。
20.0s to 22.0s: 然后我又回到了家。。
22.0s to 25.0s: "但现在我回来了,永远地回来了..."
25.0s to 27.0s: "我永远不会忘记你..."
27.0s to 29.0s: "爸爸,你想念大海吗?"
29.0s to 31.0s: 嗯,有时候...
31.0s to 36.0s: 这是大爷狗、爷爷猪和脾气暴躁的兔子。
36.0s to 37.0s: 你好。
37.0s to 40.0s: "船长狗可以出来玩吗?"
40.0s to 43.0s: 什么?我们要去钓鱼了。。
43.0s to 44.0s: 在船上?
44.0s to 45.0s: 在海上!
45.0s to 47.0s: 好的,我们走吧。
47.0s to 51.0s: "但是爸爸,你说过你再也不会上船了…"
51.0s to 54.0s: "我不会再上船了.."
54.0s to 57.0s: "你说过再也不会上船了..."
57.0s to 60.0s: 哦,是的。所以我做了。
60.0s to 62.0s: 好的,再见。
62.0s to 63.0s: 再见。。
*****************************************************************

--------------------------------------------------------------------------------
chatbot (to user_proxy):

TERMINATE

--------------------------------------------------------------------------------