Examples by Notebook
Translating Video audio using Whisper and GPT-3.5-turbo
Examples
- Examples by Category
- Examples by Notebook
- Notebooks
- Using RetrieveChat Powered by MongoDB Atlas for Retrieve Augmented Code Generation and Question Answering
- Using RetrieveChat Powered by PGVector for Retrieve Augmented Code Generation and Question Answering
- Using RetrieveChat with Qdrant for Retrieve Augmented Code Generation and Question Answering
- Agent Tracking with AgentOps
- AgentOptimizer: An Agentic Way to Train Your LLM Agent
- Task Solving with Code Generation, Execution and Debugging
- Assistants with Azure Cognitive Search and Azure Identity
- CaptainAgent
- Usage tracking with AutoGen
- Agent Chat with custom model loading
- Agent Chat with Multimodal Models: DALLE and GPT-4V
- Use AutoGen in Databricks with DBRX
- Auto Generated Agent Chat: Task Solving with Provided Tools as Functions
- Task Solving with Provided Tools as Functions (Asynchronous Function Calls)
- Writing a software application using function calls
- Currency Calculator: Task Solving with Provided Tools as Functions
- Groupchat with Llamaindex agents
- Group Chat
- Group Chat with Retrieval Augmented Generation
- Group Chat with Customized Speaker Selection Method
- FSM - User can input speaker transition constraints
- Perform Research with Multi-Agent Group Chat
- StateFlow: Build Workflows through State-Oriented Actions
- Group Chat with Coder and Visualization Critic
- Using Guidance with AutoGen
- Auto Generated Agent Chat: Task Solving with Code Generation, Execution, Debugging & Human Feedback
- Generate Dalle Images With Conversable Agents
- Auto Generated Agent Chat: Function Inception
- Auto Generated Agent Chat: Task Solving with Langchain Provided Tools as Functions
- Engaging with Multimodal Models: GPT-4V in AutoGen
- Agent Chat with Multimodal Models: LLaVA
- Runtime Logging with AutoGen
- Agent with memory using Mem0
- Solving Multiple Tasks in a Sequence of Async Chats
- Solving Multiple Tasks in a Sequence of Chats
- Nested Chats for Tool Use in Conversational Chess
- Conversational Chess using non-OpenAI clients
- Solving Complex Tasks with A Sequence of Nested Chats
- Solving Complex Tasks with Nested Chats
- OptiGuide with Nested Chats in AutoGen
- Chat with OpenAI Assistant using function call in AutoGen: OSS Insights for Advanced GitHub Data Analysis
- Auto Generated Agent Chat: Group Chat with GPTAssistantAgent
- RAG OpenAI Assistants in AutoGen
- OpenAI Assistants in AutoGen
- Auto Generated Agent Chat: GPTAssistant with Code Interpreter
- Agent Observability with OpenLIT
- Auto Generated Agent Chat: Collaborative Task Solving with Coding and Planning Agent
- ReasoningAgent - Advanced LLM Reasoning with Multiple Search Strategies
- SocietyOfMindAgent
- SQL Agent for Spider text-to-SQL benchmark
- Interactive LLM Agent Dealing with Data Stream
- Structured output
- WebSurferAgent
- Swarm Orchestration with AG2
- Using a local Telemetry server to monitor a GraphRAG agent
- Trip planning with a FalkorDB GraphRAG agent using a Swarm
- (Legacy) Implement Swarm-style orchestration with GroupChat
- Chatting with a teachable agent
- Making OpenAI Assistants Teachable
- Auto Generated Agent Chat: Teaching AI New Skills via Natural Language Interaction
- Preprocessing Chat History with `TransformMessages`
- Auto Generated Agent Chat: Collaborative Task Solving with Multiple Agents and Human Users
- Translating Video audio using Whisper and GPT-3.5-turbo
- Auto Generated Agent Chat: Solving Tasks Requiring Web Info
- Web Scraping using Apify Tools
- Websockets: Streaming input and output using websockets
- Solving Multiple Tasks in a Sequence of Chats with Different Conversable Agent Pairs
- Demonstrating the `AgentEval` framework using the task of solving math problems as an example
- Agent Chat with Async Human Inputs
- Automatically Build Multi-agent System from Agent Library
- AutoBuild
- A Uniform interface to call different LLMs
- From Dad Jokes To Sad Jokes: Function Calling with GPTAssistantAgent
- Language Agent Tree Search
- Mitigating Prompt hacking with JSON Mode in Autogen
- Using RetrieveChat for Retrieve Augmented Code Generation and Question Answering
- Using Neo4j's graph database with AG2 agents for Question & Answering
- Enhanced Swarm Orchestration with AG2
- Cross-Framework LLM Tool Integration with AG2
- RealtimeAgent in a Swarm Orchestration
- ReasoningAgent - Advanced LLM Reasoning with Multiple Search Strategies
- Application Gallery
Examples by Notebook
Translating Video audio using Whisper and GPT-3.5-turbo
In this notebook, we demonstrate how to use whisper and GPT-3.5-turbo
with AssistantAgent
and UserProxyAgent
to recognize and translate
the speech sound from a video file and add the timestamp like a subtitle
file based on
agentchat_function_call.ipynb
Requirements
:::info Requirements
Some extra dependencies are needed for this notebook, which can be installed via pip:
```bash
pip install autogen openai openai-whisper
```
For more information, please refer to the [installation guide](/docs/installation/).
:::
Set your API Endpoint
It is recommended to store your OpenAI API key in the environment
variable. For example, store it in OPENAI_API_KEY
.
import os
config_list = [
{
"model": "gpt-4",
"api_key": os.getenv("OPENAI_API_KEY"),
}
]
:::tip
Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration).
:::
Example and Output
Below is an example of speech recognition from a Peppa Pig cartoon
video
clip
originally in English and translated into Chinese. ‘FFmpeg’ does not
support online files. To run the code on the example video, you need to
download the example video locally. You can change your_file_path
to
your local video file path.
from typing import Annotated, List
import whisper
from openai import OpenAI
import autogen
source_language = "English"
target_language = "Chinese"
key = os.getenv("OPENAI_API_KEY")
target_video = "your_file_path"
assistant = autogen.AssistantAgent(
name="assistant",
system_message="For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
llm_config={"config_list": config_list, "timeout": 120},
)
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=10,
code_execution_config={},
)
def translate_text(input_text, source_language, target_language):
client = OpenAI(api_key=key)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": f"Directly translate the following {source_language} text to a pure {target_language} "
f"video subtitle text without additional explanation.: '{input_text}'",
},
],
max_tokens=1500,
)
# Correctly accessing the response content
translated_text = response.choices[0].message.content if response.choices else None
return translated_text
@user_proxy.register_for_execution()
@assistant.register_for_llm(description="using translate_text function to translate the script")
def translate_transcript(
source_language: Annotated[str, "Source language"], target_language: Annotated[str, "Target language"]
) -> str:
with open("transcription.txt", "r") as f:
lines = f.readlines()
translated_transcript = []
for line in lines:
# Split each line into timestamp and text parts
parts = line.strip().split(": ")
if len(parts) == 2:
timestamp, text = parts[0], parts[1]
# Translate only the text part
translated_text = translate_text(text, source_language, target_language)
# Reconstruct the line with the translated text and the preserved timestamp
translated_line = f"{timestamp}: {translated_text}"
translated_transcript.append(translated_line)
else:
# If the line doesn't contain a timestamp, add it as is
translated_transcript.append(line.strip())
return "\n".join(translated_transcript)
@user_proxy.register_for_execution()
@assistant.register_for_llm(description="recognize the speech from video and transfer into a txt file")
def recognize_transcript_from_video(filepath: Annotated[str, "path of the video file"]) -> List[dict]:
try:
# Load model
model = whisper.load_model("small")
# Transcribe audio with detailed timestamps
result = model.transcribe(filepath, verbose=True)
# Initialize variables for transcript
transcript = []
sentence = ""
start_time = 0
# Iterate through the segments in the result
for segment in result["segments"]:
# If new sentence starts, save the previous one and reset variables
if segment["start"] != start_time and sentence:
transcript.append(
{
"sentence": sentence.strip() + ".",
"timestamp_start": start_time,
"timestamp_end": segment["start"],
}
)
sentence = ""
start_time = segment["start"]
# Add the word to the current sentence
sentence += segment["text"] + " "
# Add the final sentence
if sentence:
transcript.append(
{
"sentence": sentence.strip() + ".",
"timestamp_start": start_time,
"timestamp_end": result["segments"][-1]["end"],
}
)
# Save the transcript to a file
with open("transcription.txt", "w") as file:
for item in transcript:
sentence = item["sentence"]
start_time, end_time = item["timestamp_start"], item["timestamp_end"]
file.write(f"{start_time}s to {end_time}s: {sentence}\n")
return transcript
except FileNotFoundError:
return "The specified audio file could not be found."
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
Now, start the chat:
user_proxy.initiate_chat(
assistant,
message=f"For the video located in {target_video}, recognize the speech and transfer it into a script file, "
f"then translate from {source_language} text to a {target_language} video subtitle text. ",
)
user_proxy (to chatbot):
For the video located in E:\pythonProject\gpt_detection\peppa pig.mp4, recognize the speech and transfer it into a script file, then translate from English text to a Chinese video subtitle text.
--------------------------------------------------------------------------------
chatbot (to user_proxy):
***** Suggested function Call: recognize_transcript_from_video *****
Arguments:
{
"audio_filepath": "E:\\pythonProject\\gpt_detection\\peppa pig.mp4"
}
********************************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION recognize_transcript_from_video...
Detecting language using up to the first 30 seconds. Use `--language` to specify the language
Detected language: English
[00:00.000 --> 00:03.000] This is my little brother George.
[00:03.000 --> 00:05.000] This is Mummy Pig.
[00:05.000 --> 00:07.000] And this is Daddy Pig.
[00:07.000 --> 00:09.000] Pee-pah Pig.
[00:09.000 --> 00:11.000] Desert Island.
[00:11.000 --> 00:14.000] Pepper and George are at Danny Dog's house.
[00:14.000 --> 00:17.000] Captain Dog is telling stories of when he was a sailor.
[00:17.000 --> 00:20.000] I sailed all around the world.
[00:20.000 --> 00:22.000] And then I came home again.
[00:22.000 --> 00:25.000] But now I'm back for good.
[00:25.000 --> 00:27.000] I'll never forget you.
[00:27.000 --> 00:29.000] Daddy, do you miss the sea?
[00:29.000 --> 00:31.000] Well, sometimes.
[00:31.000 --> 00:36.000] It is Grandad Dog, Grandpa Pig and Grumpy Rabbit.
[00:36.000 --> 00:37.000] Hello.
[00:37.000 --> 00:40.000] Can Captain Dog come out to play?
[00:40.000 --> 00:43.000] What? We are going on a fishing trip.
[00:43.000 --> 00:44.000] On a boat?
[00:44.000 --> 00:45.000] On the sea!
[00:45.000 --> 00:47.000] OK, let's go.
[00:47.000 --> 00:51.000] But Daddy, you said you'd never get on a boat again.
[00:51.000 --> 00:54.000] I'm not going to get on a boat again.
[00:54.000 --> 00:57.000] You said you'd never get on a boat again.
[00:57.000 --> 01:00.000] Oh, yes. So I did.
[01:00.000 --> 01:02.000] OK, bye-bye.
[01:02.000 --> 01:03.000] Bye.
user_proxy (to chatbot):
***** Response from calling function "recognize_transcript_from_video" *****
[{'sentence': 'This is my little brother George..', 'timestamp_start': 0, 'timestamp_end': 3.0}, {'sentence': 'This is Mummy Pig..', 'timestamp_start': 3.0, 'timestamp_end': 5.0}, {'sentence': 'And this is Daddy Pig..', 'timestamp_start': 5.0, 'timestamp_end': 7.0}, {'sentence': 'Pee-pah Pig..', 'timestamp_start': 7.0, 'timestamp_end': 9.0}, {'sentence': 'Desert Island..', 'timestamp_start': 9.0, 'timestamp_end': 11.0}, {'sentence': "Pepper and George are at Danny Dog's house..", 'timestamp_start': 11.0, 'timestamp_end': 14.0}, {'sentence': 'Captain Dog is telling stories of when he was a sailor..', 'timestamp_start': 14.0, 'timestamp_end': 17.0}, {'sentence': 'I sailed all around the world..', 'timestamp_start': 17.0, 'timestamp_end': 20.0}, {'sentence': 'And then I came home again..', 'timestamp_start': 20.0, 'timestamp_end': 22.0}, {'sentence': "But now I'm back for good..", 'timestamp_start': 22.0, 'timestamp_end': 25.0}, {'sentence': "I'll never forget you..", 'timestamp_start': 25.0, 'timestamp_end': 27.0}, {'sentence': 'Daddy, do you miss the sea?.', 'timestamp_start': 27.0, 'timestamp_end': 29.0}, {'sentence': 'Well, sometimes..', 'timestamp_start': 29.0, 'timestamp_end': 31.0}, {'sentence': 'It is Grandad Dog, Grandpa Pig and Grumpy Rabbit..', 'timestamp_start': 31.0, 'timestamp_end': 36.0}, {'sentence': 'Hello..', 'timestamp_start': 36.0, 'timestamp_end': 37.0}, {'sentence': 'Can Captain Dog come out to play?.', 'timestamp_start': 37.0, 'timestamp_end': 40.0}, {'sentence': 'What? We are going on a fishing trip..', 'timestamp_start': 40.0, 'timestamp_end': 43.0}, {'sentence': 'On a boat?.', 'timestamp_start': 43.0, 'timestamp_end': 44.0}, {'sentence': 'On the sea!.', 'timestamp_start': 44.0, 'timestamp_end': 45.0}, {'sentence': "OK, let's go..", 'timestamp_start': 45.0, 'timestamp_end': 47.0}, {'sentence': "But Daddy, you said you'd never get on a boat again..", 'timestamp_start': 47.0, 'timestamp_end': 51.0}, {'sentence': "I'm not going to get on a boat again..", 'timestamp_start': 51.0, 'timestamp_end': 54.0}, {'sentence': "You said you'd never get on a boat again..", 'timestamp_start': 54.0, 'timestamp_end': 57.0}, {'sentence': 'Oh, yes. So I did..', 'timestamp_start': 57.0, 'timestamp_end': 60.0}, {'sentence': 'OK, bye-bye..', 'timestamp_start': 60.0, 'timestamp_end': 62.0}, {'sentence': 'Bye..', 'timestamp_start': 62.0, 'timestamp_end': 63.0}]
****************************************************************************
--------------------------------------------------------------------------------
chatbot (to user_proxy):
***** Suggested function Call: translate_transcript *****
Arguments:
{
"source_language": "en",
"target_language": "zh"
}
*********************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION translate_transcript...
user_proxy (to chatbot):
***** Response from calling function "translate_transcript" *****
0s to 3.0s: 这是我小弟弟乔治。
3.0s to 5.0s: 这是妈妈猪。
5.0s to 7.0s: 这位是猪爸爸..
7.0s to 9.0s: 'Peppa Pig...' (皮皮猪)
9.0s to 11.0s: "荒岛.."
11.0s to 14.0s: 胡椒和乔治在丹尼狗的家里。
14.0s to 17.0s: 船长狗正在讲述他作为一名海员时的故事。
17.0s to 20.0s: 我环游了全世界。
20.0s to 22.0s: 然后我又回到了家。。
22.0s to 25.0s: "但现在我回来了,永远地回来了..."
25.0s to 27.0s: "我永远不会忘记你..."
27.0s to 29.0s: "爸爸,你想念大海吗?"
29.0s to 31.0s: 嗯,有时候...
31.0s to 36.0s: 这是大爷狗、爷爷猪和脾气暴躁的兔子。
36.0s to 37.0s: 你好。
37.0s to 40.0s: "船长狗可以出来玩吗?"
40.0s to 43.0s: 什么?我们要去钓鱼了。。
43.0s to 44.0s: 在船上?
44.0s to 45.0s: 在海上!
45.0s to 47.0s: 好的,我们走吧。
47.0s to 51.0s: "但是爸爸,你说过你再也不会上船了…"
51.0s to 54.0s: "我不会再上船了.."
54.0s to 57.0s: "你说过再也不会上船了..."
57.0s to 60.0s: 哦,是的。所以我做了。
60.0s to 62.0s: 好的,再见。
62.0s to 63.0s: 再见。。
*****************************************************************
--------------------------------------------------------------------------------
chatbot (to user_proxy):
TERMINATE
--------------------------------------------------------------------------------